Chemical elements
  Arsenic
      Occurrence
      Ubiquity
      History
    Isotopes
    Energy
    Production
    Application
    Physical Properties
    Chemical Properties
      Aluminium Arsenide
      Antimony Arsenides
      Barium Arsenide
      Bismuth Arsenides
      Cadmium Arsenides
      Calcium Arsenide
      Cerium Arsenide
      Chromium Arsenides
      Cobalt Arsenides
      Copper Arsenides
      Gold Arsenides
      Iridium Arsenide
      Iron Arsenides
      Lead Arsenides
      Lithium Arsenide
      Magnesium Arsenide
      Manganese Arsenides
      Mercury Arsenides
      Molybdenum Arsenide
      Nickel Arsenides
      Niobium Arsenide
      Palladium Di-arsenide
      Platinum Arsenides
      Potassium Arsenides
      Rhodium Arsenide
      Ruthenium Arsenide
      Silver Arsenides
      Sodium Arsenide
      Strontium Arsenide
      Thallium Arsenide
      Tin Arsenides
      Tungsten Arsenide
      Uranium Arsenide
      Zinc Arsenides
      Arsenic Subhydride
      Arsenic Monohydride
      Arsenic Trihydride
      Arsenic Trifluoride
      Arsenic Pentafluoride
      Arsenic Nitrosyl Hexafluoride
      Arsenic Trichloride
      Arsenic Oxychloride
      Arsenic Pentachloride
      Arsenic Tribromide
      Arsenic Oxybromide
      Arsenic Moniodide
      Arsenic Diiodide
      Arsenic Triiodide
      Arsenic Pentiodide
      Arsenic Suboxide
      Arsenious Oxide
      Aluminium Arsenite
      Ammonium Arsenites
      Antimony Arsenite
      Barium Arsenites
      Beryllium Arsenite
      Bismuth Arsenite
      Cadmium Arsenites
      Calcium Arsenites
      Chromic Arsenite
      Cobalt Arsenites
      Copper Arsenites
      Gold Arsenites
      Iron Arsenites
      Lead Arsenites
      Lithium Arsenite
      Magnesium Arsenites
      Manganese Arsenites
      Mercury Arsenites
      Nickel Arsenites
      Palladium Pyroarsenite
      Platinum Arsenites
      Potassium Arsenites
      Arsenites of Rare Earth Metals
      Rubidium Metarsenite
      Silver Arsenites
      Sodium Arsenites
      Strontium Arsenites
      Thallous Orthoarsenite
      Tin Arsenites
      Titanyl Tetrarsenite
      Tungsto-arsenites
      Uranyl Metarsenite
      Zinc Arsenites
      Zirconium Arsenite
      Arsenic Tetroxide
      Arsenic Pentoxide
      Aluminium Arsenates
      Ammonium Arsenates
      Barium Arsenates
      Beryllium Arsenates
      Bismuth Arsenates
      Cadmium Arsenates
      Caesium Arsenate
      Calcium Arsenates
      Chromium Arsenates
      Cobalt Arsenates
      Copper Arsenates
      Hydroxylamine Orthoarsenate
      Iron Arsenates
      Lead Arsenates
      Lithium Arsenates
      Magnesium Arsenates
      Manganese Arsenates
      Mercury Arsenates
      Molybdenum Arsenates
      Nickel Arsenates
      Palladium Arsenate
      Platinic Arsenate
      Potassium Arsenates
      Rare Earth Metals Arsenates
      Rhodium Arsenate
      Rubidium Arsenates
      Silver Arsenates
      Sodium Arsenates
      Strontium Arsenates
      Thallium Arsenates
      Thorium Arsenates
      Tin Arsenates
      Titanyl Arsenate
      Tungsto-arsenic Acids
      Uranium Arsenates
      Vanado-arsenates
      Zinc Arsenates
      Zirconium Arsenates
      Perarsenates
      Arsenic and Sulphur
      Arsenic Subsulphide
      Tetrarsenic Trisulphide
      Arsenic Disulphide
      Arsenic Trisulphide
      Arsenic Pentasulphide
      Thioarsenates
      Ammonium Thioarsenates
      Antimony Thioarsenate
      Barium Thioarsenates
      Beryllium Thioarsenate
      Bismuth Thioarsenate
      Cadmium Thioarsenates
      Calcium Thioarsenates
      Cerium Thioarsenates
      Chromium Thioarsenate
      Cobalt Thioarsenate
      Copper Thioarsenates
      Gold Thioarsenates
      Iron Thioarsenates
      Lead Thioarsenates
      Lithium Thioarsenates
      Magnesium Thioarsenates
      Manganese Thioarsenates
      Mercury Thioarsenates
      Molybdenum Thioarsenates
      Nickel Thioarsenates
      Platinic Thioarsenate
      Potassium Thioarsenates
      Silver Thioarsenates
      Sodium Thioarsenates
      Strontium Thioarsenates
      Thallium Orthothioarsenate
      Tin Thioarsenates
      Uranyl Thioarsenate
      Yttrium Thioarsenate
      Zinc Thioarsenates
      Zirconium Thioarsenate
      Trioxythioarsenic Acid
      Dioxydithioarsenic Acid
      Oxytrithioarsenic Acid
      Arsenic Monosulphatotrioxide
      Arsenic Disulphatotrioxide
      Arsenic Trisulphatotrioxide
      Arsenic Tetrasulphatotrioxide
      Arsenic Hexasulphatotrioxide
      Arsenic Octasulphatotrioxide
      Complex salts of Sulphato-compounds of Arsenic
      Arsenic Nitride
      Arsenic Imide
      Arsenic Amide
      Arsenic Phosphides
      Arsenic oxyphosphides
      Arsenic Phosphate
      Arsenic Thiophosphate
      Arsenic Tricarbide
      Arsenic Pentasilicide
      Boron Arsenate
    Detection of Arsenic
    Estimation of Arsenic
    Physiological Properties
    PDB 1b92-1ihu
    PDB 1ii0-1tnd
    PDB 1tql-2hmh
    PDB 2hx2-2xnq
    PDB 2xod-3htw
    PDB 3hzf-3od5
    PDB 3ouu-9nse

Manganese Arsenides






Effect of Temperature
The Effect of Temperature on (A) Specific Heat and (B) Magnetic Induction of Trimanganese Di-arsenide, and (C) the Rate of Change of the Magnetic Induction with Temperature.
Three of these have been described: Mn2As, Mn3As3 and MnAs. The hemi-arsenide, Mn2As, is prepared, according to Arrivaut, by heating a mixture of arsenic and manganese at 500° C.; combination occurs with incandescence. It is also formed when the monarsenide is heated in the absence of air. Hilpert and Dieckmann could not obtain the hemi-arsenide, but Arrivaut, in an investigation of the E.M.F. diagram of Mn-As alloys containing 6 to 53 per cent. As, showed the presence of the two arsenides Mn2As and Mn3As2. The former is grey and non-magnetic and is stable at high temperatures. The latter, trimanganese di-arsenide, Mn3As2, is obtained by heating the mixture of elements in a current of hydrogen at 700° to 800° C. When freshly prepared, this arsenide is ferromagnetic, but on heating to about 45° C. it becomes paramagnetic; on cooling it returns to the ferromagnetic state. Each subsequent transition from the ferromagnetic to the paramagnetic state increases the intrinsic magnetisation, and the thermal properties are also affected. Thus the specific heat of a specimen of the arsenide was observed to change as shown in fig.; the value increased slowly from 0.122 at 28° C. to 0.14 at 36° C., then rapidly rose to a maximum of about 0.8 at 42.2° C., falling steeply to 0.13 at 45° C. (the critical temperature) and reaching a minimum at about 46.5° C. Thus heat is rapidly absorbed as the substance passes from the ferromagnetic to the paramagnetic state. In the figure, the curve B shows, in arbitrary units, the effect of temperature on the magnetic induction, and the curve C the rate of change of magnetic induction with temperature, also in arbitrary units. The latter shows a maximum at 42.2° C. and corresponds closely to the specific heat curve. Bates suggests that the changes are due to interaction between the spin moment of one atom and the orbital moment of another. The density also changes from 6.26 to 6.20, and the course of the volume- temperature curve between 15° and 50° C. resembles those of the intensity of magnetisation-temperature and the specific heat-temperature curves. The change is gradual and there is a temperature hysteresis. The transition from the paramagnetic to the ferromagnetic form appears to involve a series of irreversible metastable conditions. No volume change results from the application of a magnetic field.


Manganese Monarsenide, MnAs

Manganese Monarsenide, MnAs, was described by Wedekind as a black crystalline powder formed by heating together manganese and arsenic, the product being freed from excess of the former by treatment with dilute hydrochloric acid, and of the latter by heating in chlorine. Its density was 5.5 and it was stable only below 400° to 450° C., further heating causing loss of arsenic. A similar product may be obtained by the action of arsenic trichloride on manganese. Hilpert and Dieckmann heated pure manganese in arsenic vapour under pressure, but Bates, using the same method, found that the product contained nearly equal parts of manganese and arsenic and therefore corresponded with Mn3As2. Arrivaut was unable to prepare the monarsenide, as the mixture (containing 57 per cent. As) decomposed on fusion. There is consequently some confusion in the literature. Wedekind's product was non-magnetic. The crystal structure of the so-called monarsenide has been investigated.
© Copyright 2008-2012 by atomistry.com